A class of nonsymmetric orthogonal polynomials

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonsymmetric Linear Diierence Equations for Multiple Orthogonal Polynomials

We rst give a brief survey of some aspects of orthogonal polynomials. The three-term recurrence relation gives a tridiagonal matrix and the corresponding Ja-cobi operator gives useful information about the orthogonalizing measure and the asymptotic behavior of the zeros of the orthogonal polynomials. The Toda lattice and other similar dynamical systems (Langmuir lattice or Kac-Van Moerbeke latt...

متن کامل

A New Class of Orthogonal Polynomials on the Unit Circle

Even though the theory of orthogonal polynomials on the unit circle, also known as the theory of Szegő polynomials, is very extensive, it is less known than the theory of orthogonal polynomials on the real line. One reason for this may be that “beautiful” examples on the theory of Szegő polynomials are scarce. This is in contrast to the wonderful examples of Jacobi, Laguerrer and Hermite polyno...

متن کامل

A Non-standard Class of Sobolev Orthogonal Polynomials

When τ is a quasi-definite moment functional onP , the vector space of all real polynomials, we consider a symmetric bilinear form φ(·, ·) on P ×P defined by φ(p, q) = λp(a)q(a)+ μp(b)q(b)+ 〈τ, p′q ′〉, where λ,μ, a, and b are real numbers. We first find a necessary and sufficient condition for φ(·, ·) to be quasi-definite. When τ is a semi-classical moment functional, we discuss algebraic prope...

متن کامل

Perturbations in the Nevai matrix class of orthogonal matrix polynomials

In this paper we study a Jacobi block matrix and the behavior of the limit of its entries when a perturbation of its spectral matrix measure by the addition of a Dirac delta matrix measure is introduced. © 2001 Elsevier Science Inc. All rights reserved.

متن کامل

Toda Chain, Sheffer Class of Orthogonal Polynomials and Combinatorial Numbers

A classification of Hankel determinant solutions of the restricted Toda chain equations is presented through polynomial Ansatz for moments. Each solution corresponds to the Sheffer class orthogonal polynomials. In turn, these solutions are equivalent to solutions with separated variables in Toda chain. These solutions lead naturally to explicit Hankel determinants of some combinatorial numbers.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1987

ISSN: 0022-247X

DOI: 10.1016/0022-247x(87)90092-8